289 research outputs found

    Territoriality of giant otter groups in an area with seasonal flooding.

    Get PDF
    Territoriality carries costs and benefits, which are commonly affected by the spatial and temporal abundance and predictability of food, and by intruder pressure. Giant otters (Pteronura brasiliensis) live in groups that defend territories along river channels during the dry season using chemical signals, loud vocalizations and agonistic encounters. However, little is known about the territoriality of giant otters during the rainy season, when groups leave their dry season territories and follow fish dispersing into flooded areas. The objective of this study was to analyze long-term territoriality of giant otter groups in a seasonal environment. The linear extensions of the territories of 10 giant otter groups were determined based on locations of active dens, latrines and scent marks in each season. Some groups overlapped the limits of neighboring territories. The total territory extent of giant otters was correlated with group size in both seasons. The extent of exclusive territories of giant otter groups was negatively related to the number of adults present in adjacent groups. Territory fidelity ranged from 0 to 100%between seasons. Some groupsmaintained their territory for long periods, which demanded constant effort in marking and re-establishing their territories during the wet season. These results indicate that the defense capacity of groups had an important role in the maintenance of giant otter territories across seasons, which may also affect the reproductive success of alpha pairs

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    Get PDF
    Incluye contenido parcial de los autoresAbstract.Mammalian carnivores are considered a key group in maintaining ecologicalhealth and can indicate potential ecological integrity in landscapes where they occur. Carni-vores also hold high conservation value and their habitat requirements can guide managementand conservation plans. The order Carnivora has 84 species from 8 families in the Neotropicalregion: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; andUrsidae. Herein, we include published and unpublished data on native terrestrial Neotropicalcarnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTRO-PICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data wereobtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organi-zations, and private consultants. Data were collected using several methods including cameratrapping, museum collections, roadkill, line transect, and opportunistic records. Literature(peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated inthis compilation. Most of the data set consists of detection data entries (n=79,343; 79.7%) butalso includes non-detection data (n=20,262; 20.3%). Of those, 43.3% also include count data(n=43,151). The information available in NEOTROPICAL CARNIVORES will contribute tomacroecological, ecological, and conservation questions in multiple spatio-temporal perspec-tives. As carnivores play key roles in trophic interactions, a better understanding of their distri-bution and habitat requirements are essential to establish conservation management plans andsafeguard the future ecological health of Neotropical ecosystems. Our data paper, combinedwith other large-scale data sets, has great potential to clarify species distribution and relatedecological processes within the Neotropics. There are no copyright restrictions and no restric-tion for using data from this data paper, as long as the data paper is cited as the source of theinformation used. We also request that users inform us of how they intend to use the data

    Engineering Corynebacterium glutamicum for isobutanol production

    Get PDF
    The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways. Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host’s sensitivity to isobutanol toxicity revealed that C. glutamicum shows an increased tolerance to isobutanol relative to Escherichia coli. Overexpression of alsS of Bacillus subtilis, ilvC and ilvD of C. glutamicum, kivd of Lactococcus lactis, and a native alcohol dehydrogenase, adhA, led to the production of 2.6 g/L isobutanol and 0.4 g/L 3-methyl-1-butanol in 48 h. In addition, other higher chain alcohols such as 1-propanol, 2-methyl-1-butanol, 1-butanol, and 2-phenylethanol were also detected as byproducts. Using longer-term batch cultures, isobutanol titers reached 4.0 g/L after 96 h with wild-type C. glutamicum as a host. Upon the inactivation of several genes to direct more carbon through the isobutanol pathway, we increased production by ∼25% to 4.9 g/L isobutanol in a ∆pyc∆ldh background. These results show promise in engineering C. glutamicum for higher chain alcohol production using the 2-keto acid pathways

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function
    • …
    corecore